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ABSTRACT 

The invariant imbedding equation for the reflection function of a spherical shell, 
in which absorption and isotropic multiple scattering processes take place, is a non- 
linear, partial differential integral equation. Two methods for its numerical solution 
are sketched, and the results of some numerical experiments are presented. 

1. INTRODUCTION 

The theory of radiative transfer has attracted a great deal of attention from 
mathematicians over the last 50 years, with the result that a number of distin- 
guished names are attached to various parts of the theory: Ambarzumian, 
Busbridge, Chandrasekhar, Hopf, Milne, Sobolev, and Wiener, to name a few, 
In recent years, the linear Boltzmann equation, which plays an important po- 
sition in the mathematical formulation, has been approached by means of such 
sophisticated techniques as the theory of distributions, singular integral equations, 
and operator theory; see Lehner-Wing [l] for this last. 

Elegant and interesting as much of this work has been, and continues to be, 
it nevertheless possesses serious drawbacks as far as the scientist is concerned. 
To begin with, a quite high level of mathematical training and analytical expertise 
is required both to absorb and apply a number of the techniques that have been 
developed. What is even more serious is that the majority of mathematical models 
are tailored more to the analytical techniques that are available than to the day- 
to-day needs of the engineer and physicist. Thus, we see an undue emphasis upon 
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isotropic, time-independent processes in homogeneous, plane-parallel media to 
the exclusion of anisotropic, time-dependent processes in inhomogeneous, cy- 
lindrical, and spherical media. Results obtained under idealized assumptions are 
not easily applied to the interpretation of experimental results. 

These self-imposed limitations were completely understandable, and indeed 
unavoidable, in the world of the desk calculator. With the electronic digital 
computers now available, not to mention those contemplated 5 and 10 years 
hence, a new look at these problems, and indeed most of the problems of mathe- 
matical physics, is in order. There is every hope that the power and versatility 
of modern digital computers will enable the scientist in many classical fields 
simultaneously to treat quite realistic models of physical processes and to elimi- 
nate completely the mathematical middle-man. Multiple scattering is a simple 
process conceptually; it should be capable of a simple numerical treatment at a 
time when we can carry out a million multiplications a second. What we are 
asserting is a “principle of balance,” requiring that the mathematical complexity 
of the treatment of a physical process be of no higher order than that of the 
underlying physical process [2]. 

To illustrate our ideas, we shall discuss a problem of some interest in a number 
of fields: that of diffuse reflection by a medium with a spherical geometry. Our 
aim is to show that a combination of simple analytic ideas, quadrature, series 
expansion, and the ability of the digital computer to handle large systems of 
ordinary differential equations with initial conditions permits us to treat the 
quite complicated nonlinear partial differential-integral equation governing 
reflection in a straightforward fashion. Nothing we do is beyond the level of a 
first-year graduate student, or, indeed, of a well-trained undergraduate junior. 

Rather than deal with the boundary-value problem for the transport equation, 
we use invariant imbedding [3-51 to obtain an initial-value problem for the re- 
flection function. The equation is 

wz, v, u> 1 - v2 as 1 - 242 as __-__ + --__ v2 + 22 s 
dZ vz -Y&+-- 
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z (1.1) 

= A [ 1 + -; JiS(z, v, 2.4’) $1 [l +; j~S(z,v’,u)~],z>a, 

subject to the initial condition S(a, v, U) = 0 for 0 < v, u 5 1. This equation 
is obtained via invariant imbedding (see Bailey [3]). 

Of course, it is true that digital computers and the numerical solution of ap- 
proximating systems of differential equations have played an important role in the 
study of the transport equation for the last 25 years. Not sufficient attention, 
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however, has been devoted to constructing new approaches specifically designed 
to exploit the properties of the contemporary computer. Our work constitutes 
a step in this direction. 

To orient the reader, we begin with a brief account of the methods we have 
used to treat the plane-parallel case [4, 51. Following this, we present a perturba- 
tion technique which enables us to apply the methods just described to the case 
of a thin spherical shell. Next we introduce a different approach, a “quadrature” 
technique for partial derivatives, which once again allows us to use the methods of 
the plane-parallel case. The agreement between the numerical results obtained 
using the two different methods is excellent. In order to compare our results with 
those previously obtained for the plane-parallel case, we carried out the calcula- 
tions for homogeneous shells. 

2. THE PLANE-PARALLEL CASE 

Let us consider a plane-parallel slab backed up by a semi-infinite slab which is a 
perfect absorber (see Fig. 1). Let Y(Z, v, u) denote the intensity of diffusely re- 
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FIG. 1 

Incident f Iux 

2 Reflected flux 

fleeted radiation in the direction arc cos v due to incident flux with direction 
arc cos u. Then, setting S(z, v, u) = 4vr(z, v, u) (in order to obtain a symmetric 
function in v and u), we obtain the integro-differential equation 
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z 2 a, with the initial condition S(a, v, u) = 0. Here ji is the albedo for single 
scattering. For the derivation of this equation employing invariant imbedding, 
see [4], where a detailed discussion of what follows, together with extensive nu- 
merical tables, may be found. 

To obtain a numerical solution to this equation, we employ Gaussian quadra- 
ture. Write 

and then 

S(z, vi ) Uj) = &j(Z). (2.3) 

Then Eq. (1) becomes a finite set of ordinary differential equations, 

(2.4) 

Sij(0)=0,i,j=1,2 ,..., N. 
Excellent results are obtained by using N = 7, with no appreciable difference 

between the numbers obtained for N = 7, 9, Il. Usable results are obtained for 
N = 5. The calculation of the solution of 49, 81, 121 equations of this type on a 
modern digital computer for z in an interval [a, b] consumes only a few minutes. 
We can use the symmetry relation Sij = Sji either to reduce the number of equa- 
tions or as an internal check on the computations. 

3. SPHERICAL SHELL 

Let us now consider a spherical shell, a _C z 9 b, with a core, 0 _( z 5 a, 
that is a perfect absorber, subject to conical incident flux. Then the equation for 
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the S-function is now that given in Eq. (1). In order to obtain a numerical solution, 
we use a power series expansion technique which transforms (1) into a set of 
equations similar to that considered in Section 1. 

The interesting point about this procedure is that it illustrates the important 
fact that the digital computer enables us to reduce a single formidable problem 
to a large set of less formidable problems. The ability of the computer to handle 
large systems of several hundred differential equations with given initial condi- 
tions permits us to use this simple technique; see [6] for a similar discussion. 

Write x = z - a, assume that x/a < 1, and set 

where SO , $ , S, , . . . are independent of a. Substituting in (1 .l) and equating 
coefficients, we obtain the following equations: 

= h [ 1 + + 1: s&X, v’, u) $1 [ 1 + + 1: S,(x, v, u’) $1 ) 

(3.2) 

(S,L + (q+Jv + (++J~ + (+ + js, - u2L;2 so 

= A [ 1 + + J: Sdx, v, 24’) $1 [ + 1; S,(x, v’, u) $I] (3.3) 

+ A [ 1 + + 1; S,(x, v’, u) $1 [+ /:5+,(x, v, 24’) $1 . 

Using the quadrature techniques described above, we reduce these equations to a 
system of ordinary differential equations with initial conditions and readily obtain 
numerical solutions. In Section 7, we shall compare computational results obtained 
in different fashions. 

4. ACCELERATION OF CONVERGENCE 

If the thickness of the shell is small compared with the inner radius, we can 
expect this perturbation technique to provide excellent results. If x 2 a, we face 
divergence. 
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There are several ways of overcoming this difficulty. One method is to do the 
calculation in parts. First, we carry it out for x/a I 0.1, say. Then we consider 
a new problem in which the inner radius is (1 .I)a. This replaces the complete 
absorber by an inhomogeneous reflecting material, but this is not a matter of 
any difficulty. It merely yields a new initial condition, We can proceed in this 
fashion step by step until we obtain the desired shell thickness. 

Another approach is based upon the observation that the divergence of the 
power series for 1 x j 2 Q: 

1 -- 
atx 

=+ 1-++g-.,. 
[ 1 (4.1) 

is due to the singularity at x = - a. However, we are interested only in x 2 0. 
Let us then set 

y=A KY 
x+K’ x=l--Y 

for some suitably chosen K and expand in powers of y. Thus, 

1 1 1-Y -- = 
a+x a+Ky/l -y = a+(K-Cz)y * (4.3) 

A convenient choice is K = a. Although we do not know the analyticity properties 
of S as a function of x, we do know that the function exists for x 2 0 and that 
0 2 y 5 1 for x 2 0. A detailed discussion of this device for analytic continua- 
tion with further references and applications will be found in [7]. 

5. NUMERICAL ESTIMATION OF DERIVATIVES 

In Section 2, we indicated the use of quadrature techniques in the approximation 
of (2.1) by a system of ordinary differential equations. It is interesting to see if an 
analogous technique can be applied directly to (1.1). We wish to eliminate the 
derivatives by using linear combinations of the values of the functions at other 
points in the interval. 

Let x1 < x2 < . . . -C xN be N points in an x-interval, and suppose that we 
wish to approximate the derivatives of a functionf(x) at the points x1 by linear 
combinations of the values off(x) at the xi , i = 1,2, . . . , N, 

(5.1) 
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Let us determine the coefficients, by analogy with the quadrature case, by the 
condition that the equations be exact for all polynomials of degree N - 1 or less. 
Using the trial functions f(x) = xk, k = 0, 1, . . . , N - 1, we obtain a system 
of linear algebraic equations 

Jgl x5-‘cq’ = (k - 1)x:-2, k=l,2 ,..., N. (5.2) 

If we choose the xi to be the N roots of the shifted Legendre polynomial of degree 
N, F&Y), we can readily invert the coefficient matrix, a Vandermonde matrix [5]. 

Alternatively, we can obtain the CX~) explicitly by using the N test functions [S], 

The matrices (c# for N = 7 and 9 are given in Tables I and II. 

TABLE I 

THE COEFFICIENTS a?’ FOR N = 7 

i=l 
- 0.19136364E 02 
- 0.73554054E 01 

i=2 
- 0.30774OOlE 01 

0.27743267E 01 

i=3 
0.73878691E 00 

- 0.24639939E 01 

i=4 
- 0.36940283E-00 

0.43048331E 01 

i=S 
0.296213528-00 
0.97174703E 00 

i=6 
- 0.37784329E-00 
- 0.94826608E 01 

i=7 
0.105362108 01 
0.18345136E 02 

0.30166068E 02 
0.37037909E 01 

- 0.32947313E 01 
0.13485609E 01 

- 0.3743374OE 01 
0.10951929E 01 

0.14803137E 01 
- 0.14803137E 01 

- 0.10951929E 01 
0.3743374OE 01 

0.13485609E 01 
0.32947313E 01 

- 0.37037909E 01 
- 0.30166068E 02 

- 0.18345136E 02 
- 0.10536210E 01 

0.94826608E 01 
0.37784329E-00 

- 0.97174703E 00 
- 0.29621352E-00 

- 0.43048331E 01 
0.36940283E-00 

0.24639939E 01 
- 0.73878691E 00 

- 0.27743267E 01 
0.30774OOlE 01 

0.73554054E 01 
0.19136364E 02 

0.12020668E 02 

- 0.49141384E 01 

0.56413488E 01 

- 0.99475983E-13 

- 0.56413488E 01 

0.49141384E 01 

- 0.12020668E 02 
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TABLE 11 

THE COEFFICIENTS aji) FOR N ; 9 

i=l 

- 0.30899183E 02 0.49462602E 02 
- 0.166343258 02 0.11463908E 02 
- 0.10328869E 01 

i=2 

- 0.46321847E 01 - 0.55540647E 01 
0.58950087E 01 - 0.39077266E 01 

0.33923594E-00 
0.33923594E-00 

j-3 

0.99779608E 00 - 0.51953604E 01 

- 0.46474057E 01 0.27969636E 01 
- 0.223838008-00 

j z 4 

- 0.41927865E-00 0.172381238 01 
0.67044574E 01 - 0.308400758 01 

0.20889316E-00 

jz5 

0.25654308E-00 - 0.97080200E 00 

0.56843419E-11 0.56744949E 01 
- 0.25654308E-00 

i-6 

- 0.20889316E-00 0.7603382OE 00 
- 0.67044574E 01 0.72470224E 00 

0.41927865E-00 

ix7 

0,223838OOE-00 _ 0.79812006E 00 

0.46474057E 01 - 0.90706996E 01 
- 0.99779608E 00 

i=8 

- 0.33923594E-00 0.11961277E 01 
- 0.58950087E 01 0.88594615E 01 

0.46321847E 01 

i=9 

0.10328869 E 01 - 0.36223711E 01 
0.16634325E 02 - 0.23009713E 02 
0.30899183E 02 

- 0.31847722E 02 

- 0.71444862E 01 

0.15529632E 02 

0.23856884E 01 

- 0.19666417E 01 
- 0.16303335E 01 

- 0.52755643E 01 

0.16267280E 01 

0.22877170E 01 

- 0.22877170E 01 

- 0.16267280E 01 
0.52755643E 01 

0.16303335E 01 
0.19666417E 01 

- 0.23856884E 01 
- 0.15529632E 02 

0.71444762E 01 
0.31847722E 02 

0.23009713E 02 
0.36223711E 01 

- 0.88594615E 01 
- 0.11961277E 01 

0.907069968 01 
0.79812006E 00 

- 0.72470224E 00 

- 0.76033820E 00 

- 0.56744949E 01 

0.970802OOE 00 

0.30840075E 01 
- 0.17238123E 01 

- 0.27969636E 01 

0.51953605E 01 

0.39077266E 01 

0.55540647E 01 

- 0.11463908E 02 
- 0.49462602E 02 
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6. THE APPROXIMATING SYSTEM OF DIFFERENTIAL EQUATIONS 

Using quadrature on the integral terms and the foregoing approximations 
for the partial derivatives, Eq. (1.1) is replaced by 

(6.1) 

z 2 a, with initial conditions Sij(a) = 0, i, j = 1, 2, . . . , N. 

7. NUMERICAL RESULTS 

The above procedures for the calculation of S are carried out on an IBM-7044 
with FORTRAN IV source programs. In the first series of numerical experiments, 
we produce the S function for a shell by integrating the system of differential 
equations (6.1). We call this Method I. We use formulas of order N = 7 and 
N = 9, and integration step sizes of 0.005 and 0.0025. There is agreement among 
calculations for comparable cases. 

With N = 7 and a step size of 0.005, we vary the inner radius of the shell, 
a = 100, 500, and 1000. We compare reflected intensities, Y = S/4v, for the shell 
against the corresponding intensities for ,the plane-parallel slab, which should be 
obtained as a + co. The results are shown in Fig. 2. The reflection function r is 
shown for the case in which the albedo is 1 and the thickness is 3 for three angles 
of incidence that are approximately 13.0°, 60.0°, and 88.5“. We see immediately 
that the curves for the shell geometry always lie on or above the curves for the 
slab. In particular, the curve for B&5”, with a = 100, lies as much as 50% above 
the curve for the slab. As the inner radius a is increased, the r function for the 
shell approaches that for the slab. The two cases are graphically indistinguishable 
for a = 1000. For the angle of incidence 60°, we have drawn a dashed curve for 
a = 50. It is the result of a calculation with N = 5, since the calculation for 
N = 7 is unstable. 

Computations of the reflection function r are also carried out with variations 
of the perturbation technique. The partial derivatives (S,), and (S,,), which appear 
in (3.3) are in the first instance approximated by formula (5.1) in Method IIa, 
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and secondly are produced as solutions of systems of differential equations in 
Method IIb. Checks consisting of varying the order of the quadrature formula, 
varying the step length of integration, and increasing the inner radius are positive. 

A comparison of the results of Methods I, IIa, and IIb shows satisfactory 
agreement. Figure 3 shows three sets of curves for the reflection function r, for 
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FIG. 2. Some reflected intensity patterns for shells with albedo 3, = 1 and thickness x = 3, 
for various angles of incidence. 

the case in which the albedo is 1, the inner radius is 50, and the thickness is 3. 
Each set corresponds to a different angle of incidence, 17.6’, 60.0’, and 87.3’. 
The order of the quadrature formula is N = 5. Four curves are plotted for each 
angle, although in some instances they lie on top of one another. These curves 
are labeled “Slab,” “I, ” “IIa,” and “IIb”, in an obvious notation. Computing 
times to produce the data for Fig. 2, as well as tables of reflection functions for 
all shell thicknesses between 0.0 and 3.0, in increments of 0.1, are 37 seconds for 
Method I; 1 minute, 6 seconds for Method IIa; and 1 minute, 23 seconds for 
Method IIb. 

Our program is in standard FORTRAN language and requires an extended 
training for its use. This is an important point. 
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Computing times for the different methods are short. The perturbation tech- 
nique, however, has the advantage of producing reflection functions for a variety 
of shell inner radii in a single calculation [9]. This technique is found to be stable, 
and gives good results even when the ratio x/a is fairly large. This ratio is 3/50 
for the case represented by Fig. 2. 
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3” co 30 
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0 

FIG. 3. Some reflected intensity patterns for a shell with albedo 1 = 1, inner radius a = 50, 
and thickness x = 3, for various angles of incidence. 
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